
JOURNAL OF AEROSPACE COMPUTING, INFORMATION, AND COMMUNICATION
Vol. 3, August 2006

Self-∗ Distributed Query Region Covering in
Sensor Networks

Ajoy K. Datta
School of Computer Science, University of Nevada Las Vegas, USA

Maria Gradinariu
IRISA/INRIA - Universite Rennes 1, Rennes, France

Preethi Linga
School of Computer Science, University of Nevada Las Vegas, USA

and
Philippe Raipin-Parvédy

IRISA/INRIA - Universite Rennes 1, Rennes, France

In this paper, we design two novel self-∗ solutions to the minimal connected sensor cover
problem. The concept of self-∗ is used to include fault-tolerant properties like self-configuring,
self-reconfiguring, self-healing, etc. We present two self-stabilizing, fully distributed, strictly
localized, and scalable solutions, and show that these solutions are both self-configuring and
self-healing. In a self-stabilizing system, every computation, starting from an arbitrary state
(even a faulty state), eventually reaches a state which satisfies the specification. Nodes achieve
the global objective by using only local computations. Local algorithm based sensor networks
are more robust, and scale better. The proposed solutions are space optimal in terms of the
number of states used per node. Another feature of the proposed algorithms is that the faults
are contained only within the neighborhood of the faulty nodes. This paper also includes a
comparison of the performance of the two proposed solutions in terms of the stabilization
time, cover size metrics, and ability to cope with transient and permanent faults.

I. Introduction

AFTER spending the first era of computing with mainframes, we are now in the era of personal computing. The
next wave, the third era of computing was visioned by Late Mark Weiser. In 1988 at the Computer Science Lab

at Xerox PARC, he articulated the next age of computing, called ubiquitous computing.1 In ubiquitous world, we
expect to see thousands of invisible computing devices used per person, maybe, even in a household. We can now
build ad-hoc networks composed of a large number of low-cost, low-power, and small sensor nodes. These ad-hoc
wireless sensor networks2 have applications everywhere—military, business, commercial, health, and home.

Sensor networks3 are expected to be very large. In many applications, they will be densely deployed. These
networks are energy constrained. Not only the sensors have limited battery power, it is extremely difficult if not
impossible to replace the battery. They may be deployed in inaccessible terrains or disaster areas. So, it is very
important to design energy efficient sensor networks to enable untethered and unattended operation for an extended

Received 26 September 2005; revision received 02 February 2006; accepted for publication 03 May 2006. Copyright © 2006
by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper may be made for personal
or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood
Drive, Danvers, MA 01923; include the code 1542-9423/04 $10.00 in correspondence with the CCC.
An earlier version of this paper appeared in SRDS 2005. Contact author: Ajoy K. Datta. Tel.: 702-895-0870; Fax: 702-895-2639;
Email: datta@cs.unlv.edu.

437

DATTA, GRADINARIU, LINGA AND RAIPIN-PARVÉDY

period of time. The topology may change very frequently due to various reasons, like position, reliability, available
energy, malfunctioning, etc. Thus, designing reliable wireless sensor networks is challenging.

Deploying pre-configured network of a huge number of sensors is impractical. Expecting to be able to manually
maintain that size of a network is absurd. Considering all these constraints, the sensor network must be self-configuring
and self-maintaining or self-healing.4 A system is considered to be self-configuring if starting from an arbitrary state
and an arbitrary input, the system will eventually satisfy the specification or start behaving properly. A self-healing
system automatically recovers from different perturbations and dynamic changes. A self-healing system can also be
characterized as a self-maintaining system.

Software systems are being used for almost all business-critical applications. Thus, the availability of these systems
is extremely important. The system must be able to adjust to different inputs, adapt to all possible changes of the
environment, and handle different faults. The different concepts or terms encapsulated in self-∗ have been introduced
to characterize different ways of detecting, adjusting, and recovering from the above situations. Unfortunately, these
terms have not been formalized in a coherent manner. According to,5 a self-∗ system should be self-configuring,
self-organizing, self-tuning, self-healing, and self-managing. Human organization (specifically, corporate structure)
was used as an analogy to explain the concept of self-∗ in.6 The insights gained from the human organizations
combined with concepts from AI and storage systems were used to design self-∗ storage systems.5

In this paper, we will present two self-stabilizing solutions to an important energy saving problem in sensor
networks. Then we will show that these solutions can also be considered as self-∗ solutions. In a self-stabilizing system,
every computation, upon starting from an arbitrary state, eventually reaches a state from where the computation
satisfies the specification. The paradigm of self-stabilization, introduced by Dijkstra in 1974,7 is considered to be the
most unified strategy to design fault-tolerant systems. Although it is intended to handle transient faults (e.g., memory
errors, message omissions/duplications, program counter corruptions), it has been established that almost all types
of faults can be dealt with in a stabilizing manner. Readers can refer to8 for an overview of self-stabilization.

Motivation and Related Work. In sensor networks, queries are sent from some devices (could be a satellite, PDA,
laptop, or any computer) to sense some data/events over some time period and a geographical region, called a query
region. A query could be like “Every I ms for the next Y seconds, tell me how many vehicles of type T are moving
in direction D in region R”. The query region is usually a subset of the total region covered by all the sensors in
the network. Considering the limited energy available, one of the most important goals in any protocol on sensor
networks is to save energy. Since the sensors are usually densely deployed, there are usually a lot more sensors than
required to process a given query. One possible way to minimize usage of energy is not to keep all sensor nodes
fully active all the time. Some of them can be put in passive mode some times while others are active in sensing the
data in the environment. However, for the sensor networks to be effective, the active nodes must be able to cover the
whole query region and maintain the network connectivity at all times.

In,9 a new optimization problem in sensor networks, called the connected sensor cover was introduced to model
the query response system. The problem can be informally defined as follows: given a query over a sensor network,
select a minimum or nearly minimum set of sensors, called connected sensor cover, such that the selected sensors
cover the query region, and form a connected network among themselves. In its general form, this problem is known
to be NP-hard.9,10

In this work, we address the minimal connected sensor cover problem (introduced in9) that constructs a minimal
cover with respect to the inclusion operation. Coverage and connectivity issues were addressed in literature with
different assumptions: centralized, distributed using some coordinators, and probabilistic. An overview of these
approaches is presented below. Two self-organizing solutions were presented in.9 None of the solutions is localized.
The first solution is centralized. In the second solution, a particular sensor node behaves as the coordinator or leader.
This special node collects all the global information related to the possible new sensor nodes to be added, then decides
which ones to choose.

The issues of coverage and connectivity, and the relations between them were analyzed in a unified framework
in.11 The CCP protocol11 can be used to provide different degrees of coverage. It was shown in11,12 that if the
communication range is at least twice of the sensing range, the complete coverage implies connectivity. When the
above condition does not hold, CCP was integrated with SPAN13 to provide both coverage and connectivity. However,
in SPAN, the nodes need to maintain information about two-hop neighborhood. SPAN is a connectivity maintenance

438

DATTA, GRADINARIU, LINGA AND RAIPIN-PARVÉDY

protocol where a node volunteers to be a coordinator when it finds that two of its neighbors cannot communicate
with each other directly or indirectly. After a node decides to be a coordinator, it announces that with a random delay
to reduce the number of redundant coordinators. A similar approach was discussed in ASCENT.14 ASCENT nodes
use the number of active neighbors and message losses to decide if they should be active or passive. However, this
protocol does not guarantee complete coverage of the query region.

Probabilistic studies related to coverage and connectivity in unreliable sensor networks were done in.15 A sensor
grid network of unit area was considered. This work includes a necessary and sufficient condition for the network to
remain covered and connected in terms of the probability of a node to be active (i.e., not failed) and transmission radius
of the nodes. Some optimal conditions for coverage were established in.12 An algorithm for coverage was proposed
based on those optimal conditions. However, that result is valid only when complete coverage implies connectivity
(as discussed above). A coverage protocol using a random delay to announce decision to turn off was proposed in.16

The issue of connectivity was not addressed in.16 The GAF protocol17 uses GPS to reduce the redundant nodes
to maintain routing paths in ad-hoc networks. A randomized probing-based density control algorithm was used to
maintain coverage under node failures in PEAS protocol.18 The probing range can be changed to provide different
degrees of coverage.

Very recent solutions to the connected cover problem address the fault-tolerance issues by reinforcing the cov-
erage and connectivity degree. Hence in,19 the authors address the problem of k-coverage. That is, they compute a
coverage such that any sensor is covered by k other sensors. This work is further extended in20 to the k-coverage
and k-connectivity problem. The proposed solution involves the computation of a Voronoi diagram for independent
sensor nodes. The implementation of local Voronoi diagrams or handling of the transient faults is not addressed.

Contributions. None of the above mentioned solutions explicitly addresses the transient faults (memory and
program counter corruptions). The main contribution of this research is to design self-stabilizing solutions to the
connected sensor cover problem. To the best of our knowledge, these are the first localized, distributed, and self-
stabilizing solutions to the query connected cover problem in sensor networks. Localized solutions in large networks
are desirable due to their high reliability and scalability. Self-stabilization8 is the most adapted theoretical toolkit for
the design of algorithms that cope with a broad range of faults in dynamic and large scale networks. Our solutions can
handle different types of faults including node and link (wireless communication) failures, change of power level,
topology changes due to faults or new joinings, and memory and program counter corruptions. In the next section, we
define the model and specify the connected sensor cover problem. In Sections IV and V, we present self-stabilizing
solutions to the problem. The proof of the self-∗ aspects of our solutions is presented in Section VI. Discussion about
the complexity of the algorithms and simulation results are included in Section VII. The experiments were conducted
with respect to the following metrics: self-stabilization time, cover size, and fault-tolerance. Finally, in Section VIII,
we present some concluding remarks and give some ideas to extend this research.

II. Preliminaries and Model
Sensor Network. In this research, we consider a uniform sensor networks9,11 consisting of a large number of
sensors (also referred as sensor nodes and nodes in this paper) randomly distributed in a geographical region. We
model the sensor network as a directed communication graph G(V, E), where each node in V represents a sensor,
and each edge (i, j) ∈ E, called communication edge, indicates that j is a neighbor of i.

For a sensor i, there is a region, called sensing region, which signifies the area in which the sensor i can sense
a given physical phenomenon maintaining a desired confidence level. The sensing range of a sensor i indicates the
maximum distance between i and any point p in the sensing region of i. A point p is covered (or monitored) by a
sensor node i if the Euclidean distance between p and i is less than the sensing range of i.

The communication region of a sensor i (also called the transmission region) defines the area in which i can
communicate directly (i.e., in single hop) with other sensor nodes. The maximum distance between node i and any
other node j , where j is in the communication region of i, is called the communication range of i. A directed
path (sequence) of sensors i = i1, i2, . . . , im = j , where ix is a neighbor of ix+1 for 1 ≤ x ≤ m − 1, is called a
communication path from i to j . The length of the shortest (communication) path (which is the number of sensors
on the shortest path) from i to j is called the communication distance from i to j .

439

DATTA, GRADINARIU, LINGA AND RAIPIN-PARVÉDY

Program. We consider the local shared memory model of communication as used by Dijkstra.7 The program of
every processor consists of a set of shared variables (henceforth, referred to as variables) and a finite set of actions.
It can only write to its own variables, and read its own variables and variables owned by the neighboring nodes.

Each action is of the following form: 〈label〉 :: 〈guard〉 −→ 〈statement〉. The guard of an action in the program
of p is a boolean expression involving the variables of p and its neighbors. The statement of an action of p updates
one or more variables of p. An action can be executed only if its guard evaluates to true. We assume that the actions
are atomically executed, meaning, the evaluation of a guard and the execution of the corresponding statement of an
action, if executed, are done in one atomic step.

The state of a node is defined by the values of its variables. The state of a system is the product of the states
of all nodes. We will refer to the state of a node and system as a (local) state and (global) configuration, respec-
tively. Let a distributed protocol P be a collection of binary transition relations denoted by �→, on C, the set of
all possible configurations of the system. A computation of a protocol P is a maximal sequence of configurations
e = γ0, γ1, . . . , γi, γi+1, . . . , such that for i ≥ 0, γi �→ γi+1 (a single computation step) if γi+1 exists, or γi is a
terminal configuration. The Maximality means that the sequence is either infinite, or it is finite and no action of P
is enabled in the final configuration. All computations considered in this paper are assumed to be maximal. The set
of all possible computations of P in system S is denoted as E . A node p is said to be enabled in γ (γ ∈ C) if there
exists an action A such that the guard of A is true in γ . We consider that any node p executed a disable action in the
computation step γi �→ γi+1 if p was enabled in γi and not enabled in γi+1, but did not execute any action between
these two configurations. (The disable action represents the following situation: At least one neighbor of p changed
its state between γi and γi+1, and this change effectively made the guard of all actions of p false.) Similarly, an action
A is said to be enabled (in γ) at p if the guard of A is true at p (in γ).

We assume a weakly fair and distributed daemon. The weak fairness means that if a node p is continuously
enabled, then p will be eventually chosen by the daemon to execute an action. The distributed daemon implies that
during a computation step, if one or more nodes are enabled, then the daemon chooses at least one (possibly more)
of these enabled nodes to execute an action.

Fault Model. This research deals with the following types of faults: (i) The state or configuration of the system may
be arbitrarily corrupted. That is, the nodes memory and counter program can be corrupted. However, the program (or
code) of the algorithm cannot be corrupted. (ii) Nodes may crash. That is, the faults can fail-stop nodes. (iii) Nodes
may recover or join the network. The topology (both actual and logical topologies) may change due to faults. Faults
may occur in any finite number, in any order, at any frequency, and at any time.

Self-stabilization.8 Let LA be a non-empty legitimacy predicate of an algorithm A with respect to a specification
predicate Spec such that every configuration satisfying LA satisfies Spec.Algorithm A is self-stabilizing with respect
to Spec iff the following two conditions hold:

1. Every computation of A starting from a configuration satisfying LA preserves LA (closure).
2. Every computation starting from an arbitrary configuration contains a configuration that satisfies LA

(convergence).

III. Problem and Description
Our research is focused on designing a reliable self-stabilizing, self-organizing, and self-healing query-response

system. A query in sensor networks asks for some data/measurements/events sensed/observed over some period of
time at some frequency over a geographical region. Upon receiving a query, the sensors will sense or measure the
data and collaborate among themselves to disseminate or fuse the collective data to the sink of the query. Although
a query can be initiated in the whole geographical region, typically, a query refers to a subset of the region, called
the query region denoted by RQ in this paper.

The sensors only inside the query region should be involved in generating the response to the query. Considering
the redundancy and our goal of designing an efficient query-response system, all sensors inside the query region
should not be actively participating in the protocol to answer the query. Our approach is for the sensors inside RQ

to self-organize to form a logical network sufficient enough to cover the query region. However, in order for the

440

DATTA, GRADINARIU, LINGA AND RAIPIN-PARVÉDY

sensors in the logical network (i.e., the region covered by the selected sensors) to be able to collaborate to detect
the events, and compute and deliver the response, they must be able to communicate with each other directly or
indirectly. That is, the logical graph not only needs to satisfy the coverage criterion, it must also be a strongly
connected communication graph.

Definition 3.1 (Connected Sensor Cover). Consider a sensor network G consisting of n sensors I1, I2, . . . , In. Let
Si be the sensing region associated with sensor Ii . Given a query Q over a region RQ in the sensor network, a set of
sensors SCQ = Ii1 , Ii2 , . . . , Iim is called a connected sensor cover for Q if the following two conditions are satisfied:
(a) Coverage: RQ ⊆ (Si1 ∪ Si2∪, . . . , Sim). (b) Connectivity: The subgraph induced by SCQ is strongly connected
in the sense that any two sensors in this set can communicate with each other directly or indirectly.

Definition 3.2 (Minimal Connected Sensor Coverage Problem). Given a sensor network and a query over the
network, the connected sensor coverage problem is to find the minimal connected sensor cover (we will call it
MCSCQ). A cover is considered minimal if it does not include another connected cover.

Additionally, we require the algorithm (solving the above problem) to be self-organizing, self-healing, and self-
stabilizing.4,8 That is, regardless of the initial state (wrong initialization of the local variables, memory or program
counter corruptions) nodes self-configure/self-organize using only local information in order to make the system
self-stabilize to a legitimate state. The legitimate state is defined with respect to a minimal connected cover formed
out of the nodes that can communicate with each other either directly or indirectly. The nodes in this set are the only
nodes that remain active. Moreover, under various perturbations, such as node joins, failures (due to crash or energy
loss), state corruptions, or weakening of power, the minimal connected cover should be able to self-heal without any
external intervention and the impact should be confined within a tightly bounded region around the perturbed area.

In this paper, we will present two space optimal self-stabilizing, self-configuring and self-healing solutions to
the connected sensor cover problem. Computing a minimum sensor cover in its general form is NP-hard.9,10 So, the
proposed solutions make an attempt to approach an optimal solution by checking and removing redundant sensor
nodes from the final cover set. However, the solutions although suboptimal in terms of the number of sensors, satisfy
Definition 3.2.

Note that removing redundancy while constructing the distributed connected covers is a difficult task, and its
degree of accuracy depends on the exposure of a node. If nodes farther away are considered in the computation of
the redundancy, the connected cover set will approach closer to the optimal value, i.e., it is expected to be smaller.
This trade-off has been pointed out in.21 Our solutions use only two states per node and use knowledge of nodes
at a distance of up to two hops away. We conjecture that using only two states, it is impossible to construct a fully
local (i.e., only the immediate neighborhood is known) self-stabilizing connected covers, hence our solutions use
the minimal knowledge per node.

Our solutions do not require the sensors to have unique identifiers (ID’s). However, each sensor i maintains a set
of distinct labels, denoted as Ni , such that each label identifies a (unique) neighbor of i. Note that these labels are
unique only locally.

The query region forms a convex region, and its boundary (hence, its center which is used by our first implemen-
tation) is known to all sensors. The energy level of the sensors may change over time due to various reasons. The
proposed solutions cope with that.

We distinguish three types of sensors in or around the query region RQ. In our algorithms, the rules for these
three types of nodes are different. A sensor is termed as a boundary sensor if its sensing region intersects with the
boundary of the query region RQ. A sensor is called an interior sensor if its sensing region is completely inside
the query region RQ and it is not a boundary sensor. All sensors which are neither boundary nor interior are called
exterior sensors. In other words, if a sensor’s sensing region is completely outside the boundary of the query region,
then this sensor is called an exterior sensor.

Data Structures. Three variables (RQ, Ni , and Posi) are used as Constants by the proposed solutions. That is,
the algorithms do not write into these variables. The input query includes the geographical information about the
region RQ to be covered. Ni represents the neighboring sensors of sensor i. Our solutions assume that there is an
underlying self-stabilizing topology maintenance protocol which computes Ni . The sensors use either some device
or/and protocol to know their geometric location.

441

DATTA, GRADINARIU, LINGA AND RAIPIN-PARVÉDY

Module 3.1 Data structures used by Cover Algorithms (Algorithms DMSC and IMSC).

Constants:
RQ:: Query region; represented as a set in the algorithm;
Ni :: Set of sensors within the communication range of i;
Posi :: Geometric location or coordinates of Sensor i;

Shared Variables:
Si :: Sensing region of Sensor i;
Colori ∈ {black, red} :: Color of Sensor i;

Macros:
Dst(i) ≡ Returns the distance of i from the center of RQ uncovered by i sensing region

(used only in Algorithm DMSC); uses RQ and Posi to compute the distance;
BidirN(i) ≡ {j |j ∈ Ni ∧ i ∈ Nj };
RealBlackNi :: {j |j ∈ BidirNi ∧ (Colorj = Black)};
RealBlackNi,t :: {j |j ∈ BidirNi

⋃
BidirNt ∧ (Colorj = Black)};

BlackConNbrs(i) ≡ ∀j, k ∈ RealBlackNi : ∃l1, . . . , ln ∈ RealBlackNi : l1 ∈ RealBlackNj∧
(∀x < n : lx+1 ∈ RealBlackNlx) ∧ ln ∈ RealBlackNk;

BlackConNbrs(i, t) ≡ ∀j, k ∈ RealBlackNi,t : ∃l1, . . . , ln ∈ RealBlackNi,t : l1 ∈ RealBlackNj∧
(∀x < n : lx+1 ∈ RealBlackNlx) ∧ ln ∈ RealBlackNk;

The algorithms also use two Variables: Si and Colori . Si represents the sensing region of sensor i. The Color

variable is used to represent the different status of a sensor. Sensors can be either in red or black initially. Eventually,
if a sensor turns black and stays in that color, then it is considered to be a member of MCSCQ. Other sensors will
remain in red color.

Macros. The macros do not represent variables, but return values when referred to in the code. Our first solution
assumes that the sensors know the location of the center. So, they can use their location information (Pos) to compute
their distances to the center. Note that this information is used uniquely by the first solution. The macro Dst(i)

computes the distance of Sensor i from the center of RQ uncovered by the sensing region of i. We consider directed
communication graph of sensors. So, a sensor i may not have a two-way communication with all its neighbors. Sensor
i may need this knowledge (i.e., which of its neighbors have a two-way communication with it) to check redundancy.
The macro BidirN(i) returns a set of neighbors of i that effectively have a bidirectional communication with i.
The predicate BlackConNbrs(i) is used to implement the redundancy checking. This predicate is the local version
of the “Rule k” of.21 It returns true if the subgraph of black neighbors of a node is connected. We also introduce a
novel version of the “Rule k”, BlackConNbrs(i, t), that checks if the subgraph defined by the black neighbors of
two neighboring nodes, i and t , is connected.

IV. Distance-Dependent Query Cover
The first solution to the connected sensor cover problem is given as Algorithm 4.1 (referred in this paper as

Algorithm DMSC). The proposed algorithm starts from the boundary sensors of RQ, and proceeds towards the
center of the region. Starting from any configuration, the algorithm selects a few sensors among many (due to our
assumption of very dense network) to include in the (minimum) cover set MCSCQ.

If the system starts from a good initial configuration, it first selects some boundary sensors, then some interior
sensors, and keeps repeating the process of selection moving towards the center of the query region until it covers the
whole region RQ. Our solution is localized, meaning the decision to be selected in MCSCQ is taken locally by all
nodes. So, unlike the solution in,9 nodes do not collect any global information to compute MCSCQ. Sensors consult
only their immediate neighbors to decide if they should be included in the final set cover.

We also cannot adopt an aggressive procedure to improve our solution in terms of the size of the cover because
that may waste a lot of sensor energy, which would conflict with the main goal of the research.

442

DATTA, GRADINARIU, LINGA AND RAIPIN-PARVÉDY

Algorithm 4.1 Self-Stabilizing Distance-Dependent Connected Sensor Cover Algorithm (Algorithm DMSC)
for Sensor i.

Predicates:
Boundary(i) ≡ Si is a boundary sensor;
Interior(i) ≡ Si is an interior sensor;
Exterior(i) ≡ Si ∩ RQ = ∅; is an exterior sensor;
Redundant (i) ≡ BlackConNbrs(i) ∧ (Si

⋂
RQ) ⊆ ⋃

j∈RealBlackNi
Sj ;

SameIntrsctn(i, j) ≡ Interior(i) ∧ Interior(j) ∧ (∃x, y ∈ {Ni ∩ Nj }:
(Colorx = Colory = black) : (i ∈ Nx ∧ i ∈ Ny) ∧ Posi ∈ (Sx ∩ Sy) ∧ Posj ∈ (Sx ∩ Sy));

BestCandidate(i) ≡ ∀j ∈ Ni : SameIntrsctn(i, j) : (Dst (i) ≤ Dst(j));
Actions:

A1 :: Boundary(i) ∧ ¬Redundant (i) ∧ Colori �= black −→ Colori = black

A2 :: (Redundant (i) ∨ Exterior(i)) ∧ Colori �= red −→ Colori = red

A3 :: BestCandidate(i) ∧ ¬Redundant (i) ∧ Colori �= black −→ Colori = black

A. Normal Behavior
In the following, we assume that the system starts from a good initial configuration, meaning, all sensors are

red initially. If the system starts from a good initial configuration, it first selects some boundary sensors, then some
interior sensors, and keeps repeating the process of selection moving towards the center of the query region until it
covers the whole region RQ. In the following, we will first describe how some boundary red sensors are selected to
turn black to cover the boundary of RQ. Then we discuss the general case of covering any uncovered region inside
the query region.

Boundary of RQ. The initial task is to select enough sensors to cover the boundary with a communication network
of sensors. The selected sensors will be colored black, and the rest will remain red. This is implemented in Action
A1 using the predicates Boundary and Redundant . A boundary node will turn black and remain black only if it
is not a redundant node. The redundant nodes will be eventually marked red. The redundancy is checked by using
the predicate Redundant , and is described in detail in the next paragraph. Action A1 changes a sensor from red to
black. Instead of wasting energy and time, we added the redundancy check in Action A1 itself. As we are using an
asynchronous model, some nodes may be slow in executing Action A1, while their neighbors have already changed
to black by executing the same action. So, the slow nodes soon after turning to black may find out that they are
redundant. Then, they will have to turn to red by executing another action (A2). Note that, a red sensor turns black

only after checking for possible redundancy in the neighborhood.
The above redundancy tests are implemented by a sensor i before it decides to withdraw itself from further

consideration into the set cover MCSCQ. However, those tests only verify the coverage of i by other sensor (s).
They do not implement the test of connectivity of the neighborhood of i. Recall that the set MCSCQ must be a
connected set cover. So, before removing itself, Sensor i wants to secure the connectivity in its neighborhood. This
is implemented in the predicate BlackConNbrs(i) which is a part of redundancy checking. Ideally, Sensor i needs
to check if every pair of its back neighbors j and k, will remain connected if i is marked redundant and removed.
However, if the path between j and k contains any node l �∈ RealBlackNi , then i cannot verify this path because our
solution is strictly localized. So, our implementation of BlackConNbrs(i) verifies if j and k are connected using
some intermediate nodes l1, . . . , ln where all the intermediate nodes are black neighbors of i.

Inside RQ. Current black nodes (their creation is discussed in the next paragraph) are used to create more black

nodes to gradually cover the uncovered region. Future black nodes are selected from the intersections of pairs of
existing black nodes. The algorithm considers every intersection of two black nodes. It chooses one or more red

nodes from the intersection as the new members of the cover set MCSCQ (using the predicate BestCandidate).
Note that the current black nodes may have been created using the boundary sensors selected earlier. Or, they were

created by using the predicate BestCandidate among some sensors inside an intersection of two other black nodes.

443

DATTA, GRADINARIU, LINGA AND RAIPIN-PARVÉDY

Newly selected nodes for the cover set create a new (virtual) boundary of the uncovered query region. Thus,
the algorithm reduces the uncovered portion of the query region RQ by effectively pulling the (virtual) boundary
towards the center of the query region. A sensor i is a possible candidate if it is located inside the intersection of the
sensing regions of two other black sensors. As we are dealing with dense sensor network, lots of redundant sensors
are expected to be in every intersection of two black sensors. The algorithm uses some checking (Redundant)
(explained above), and marks the best candidates as black. The best candidates are those which are closest to the
center of RQ among all the candidates in a particular group. The reason for using this distance to remove redundancy
is that the algorithm covers the query region starting from the boundary towards the center. The candidates compare
their distances to the center using the predicate BestCandidate. Eventually, every intersection between two black

nodes will be in one of the following two situations:
1. Node i is the best candidate in its neighborhood inside the intersection because it is the nearest node to the

center of RQ (see BestCandidate). If i is not a redundant node, it will execute Action A3 and turn black.
2. Sensor i is one of the sensors (let us refer them by a set B) (all in the same intersection) at the same shortest

distance from the center of RQ. In this case, all nodes in B will satisfy BestCandidate and turn black

(provided they are not redundant) by executing Action A3. Then B is the set of best candidates to be included
into MCSCQ.

B. Faults and Recovery
In this section, we focus on the fault handling features of the proposed algorithm (Algorithm 4.1). There are two

variables used in the solution: Si and Colori for a Sensor i. So, we need to show that our solution can cope with all
possible corruptions associated with these two variables.

1. Wrong initialization of the color variable. As discussed in Section A, all sensors, if properly initialized start
as red .
• Corruption of a boundary sensor. Assume that a boundary sensor i starts in black color. If i is not

a redundant node, then i remains black (see Action A1). That is, no correction is necessary. If i is
redundant, then it will satisfy the predicate Redundant , hence the guard of Action A2. Node i then
executes A2 and changes its color to red.

• Corruption of an interior sensor. Assume that an interior node is initialized as a black colored sensor.
If i is not a redundant node, then i remains black (see Action A2). So, no correction is necessary. If i

is redundant, then it will satisfy the predicate Redundant and execute Action A2 which will change its
color to red .

• Corruption of an exterior sensor. All exterior sensors must be eventually colored red. If any exterior
sensor starts as black initially, then it will execute Action A2 to change its color to red.

• Best candidate sensor’s color is corrupted from black to red. Action A3 corrects the color back to black.
• A redundant sensor’s color changes from red to black. The node, regardless of whether boundary or

interior, will satisfy Redundant and hence, the guard of Action A2. So, it will change its color to red.
2. Weakening or Failure of sensors, both in terms of communication and sensing ability. The weakening or failure

of sensors will affect the sensing and communication range of the sensors. In other words, the constant set N

and the variable S will change. Change of S may change the values of Redundant and BestCandidate. All
these changes will be reflected in the change of values of the guards. So, eventually, the color of the affected
node will change due to the execution of the actions. All change of colors have already been discussed in
earlier cases above.

C. Proof of Convergence
In this section, we will prove the convergence of Algorithm DMSC (presented in Section IV). That is, our task

is to prove that the proposed solution to the connected sensor cover problem satisfies the given specification. The
outline of this section is as follows: We will first define a legitimacy predicate of Algorithm DMSC with respect
to the specification of the proposed problem. Next it will be shown that the algorithm is guaranteed to arrive at a
legitimate state regardless of the initial configuration or type of faults occurring in the system.

444

DATTA, GRADINARIU, LINGA AND RAIPIN-PARVÉDY

Definition 4.1 (Legitimacy Predicate LDMSC). The system is considered to be in a legitimate state (i.e., satisfies
the legitimacy predicate LDMSC) if the following conditions are true with respect to a query region:
(i) All non-redundant boundary sensors are black. (ii) All non-redundant best candidate sensors are black. (iii) All
other active sensors—exterior, boundary, and interior—are red.

Our obligation in this section is to prove that starting from any arbitrary configuration of the system of sensors,
Algorithm DMSC guarantees that in finite steps, the system will reach a configuration that satisfies the legitimacy
predicate LDMSC . The proof outline is as follows: We first show that starting from an arbitrary configuration, the
boundary of RQ will be covered. Then we establish the progress towards covering the whole region by proving that
every black node creates two more black nodes to cover some other uncovered area of RQ. This process is repeated
until RQ is completely covered.

Lemma 4.1. Starting from any arbitrary configuration, the boundary of the input query RQ will be covered.

Proof. By contradiction. Assume that there is an area A which intersects the boundary of RQ is not covered. A must
contain at least an active sensor i. Then if Action A1 is enabled at i, i will turn black. Considering other sensors in
A, A will eventually be covered. That is a contradiction. Let us assume that i is not enabled to execute Action A1.
Then per guard of A1, there are two possibilities:

1. Sensor i is black. So, considering other sensors (like i) in A, A is covered. That is a contradiction.
2. The predicate Redundant (i) is true. By the definition of Redundant (i), it follows that i is covered

by black sensors. Again, considering other active sensors in A, we obtain that A is covered, hence the
contradiction.

Lemma 4.2. In any configuration, if all boundary and interior red nodes are redundant, then the region RQ is
completely covered.

Proof. Assume the contradictory, i.e., although all boundary and interior red nodes satisfy Redundant predicate,
RQ is not completely covered yet. Consider an area A intersecting RQ which is not covered. A must contain at least
an active sensor i. The color of i cannot be black since A is assumed to be uncovered. So, i is red. Since A is not
covered, i will not satisfy Redundant (i). That contradicts the lemma hypothesis.

Lemma 4.3. Every black node covering a region of RQ will eventually add two neighboring black nodes unless
the new nodes are found to be redundant.

Proof. 1. Consider a black boundary node r . That is, r covers a region on the boundary of RQ. The existence
of at least one such node is implied by Lemma 4.1. Assume that r has two black neighbors, r1 and r2. This
is a valid assumption because only one black sensor covering a region is very unlikely. Let I1 be the area
of intersection between the sensing regions of r1 and r . Then in I1, there must exist a node p that satisfies
Best_candidate(p). So, unless p is redundant (i.e., satisfies the predicate Redundant (p)), it will execute
Action A3 to turn black. Similarly, let I2 be the intersection between the sensing regions of r and r2. So,
there must be a sensor q in I2 which will satisfy Best_candidate(q), perform A3, and change its color to
black if it is not a redundant node. Note that both p and q are interior nodes.

2. Now, consider a black interior node r covering a region in RQ. By Lemma 4.2 and the above case, a node
like r exists unless RQ is completely covered. Following the same reasoning as in the above case, we can
show that r will add two more black nodes unless the new nodes are marked to be redundant.

Lemma 4.4. Starting from an arbitrary configuration, the input query region RQ will eventually be completely
covered by black nodes.

Proof. Assume that Covered_Regioni and Uncovered_Regioni represent the current covered and yet to be
covered region of RQ, respectively. By Lemmas 4.2 and 4.3, there must exist at least one black node r in
Covered_Regioni , which will generate two more black sensors. These new black sensors will cover some portion
of Uncovered_Regioni , effectively reducing the area of Uncovered_Regioni . Therefore, repeated application of
Lemma 4.3 progressively reduces the area of Uncovered_Regioni . Since Uncovered_Regioni is finite, eventually

445

DATTA, GRADINARIU, LINGA AND RAIPIN-PARVÉDY

the system reaches a configuration which satisfies one of the following two conditions:
1. Uncovered_Regioni becomes an empty set. That is, RQ is completely covered.
2. Uncovered_Regioni is nonempty. By the lemma hypothesis, there are some black nodes in

Covered_Regioni . By Lemma 4.3, a black node will create two more black nodes. If the newly created
nodes are redundant, then by Lemma 4.2, RQ is already covered. But, that is a contradiction.

Theorem 4.1 (Convergence). Starting from an arbitrary configuration, Algorithm DMSC reaches a configuration
that satisfies the legitimacy predicate LDMSC .

Proof. By Lemma 4.4, RQ will be eventually covered. Starting from this configuration, we now prove that the
system will reach a configuration satisfying LDMSC . In the following, we will consider the three conditions to be
satisfied to satisfy LDMSC .

(i) All non-redundant boundary sensors are black.
The proof follows from Action A1.

(ii) All non-redundant best candidate sensors are black.
The proof follows from Action A3

(iii) All other active sensors—exterior, boundary, and interior—are red.
Exterior nodes will turn red by applyingAction A2. Other nodes if redundant will turn red by executingAction
A2. The nodes which are not best candidates (if not already redundant) will eventually become redundant
when they will be covered by black nodes, and will turn red (if not already red).

V. Distance-Independent Query Cover
In the previous section, we proposed a distance-based solution to covering a query region. In this section, we

present a solution which does not need to compute the center of the query region. The proposed algorithm given
as Algorithm 5.1 (referred in this paper as Algorithm IMSC) has a different approach than Algorithm DMSC.
It chooses non-redundant nodes inside the query region. Note that in a good initial configuration (when all nodes
are red), every node inside the query region is a potential candidate to be selected in the final cover MCSCQ. Our
algorithm removes the redundant nodes from the MCSCQ. The two phases of the algorithm are executed based only
on the local information available to the nodes.

Algorithm 5.1 Self-Stabilizing Distance-Independent Connected Sensor Cover Algorithm (Algorithm IMSC)
for Sensor i.

Predicates:
Useless(i) ≡ (BidirNi = ∅);
Exterior(i) ≡ (Si ∩ RQ) = ∅);
Redundant (i) ≡ BlackConNbrs(i) ∧ (Si

⋂
RQ) ⊆ ⋃

j∈RealBlackNi
Sj ;

Potential_Candidate(i) ≡ ¬(Useless(i) ∨ Exterior(i)) ∧ ¬Redundant (i);
Candidate(i) ≡ Potential_Candidate(i) ∧ (∀j ∈ BidirNi : Potential_Candidate(j) :: i < j)

Potential_Link(i, j, k) ≡ Potential_Candidate(i) ∧ ¬Candidate(i)∧
(∃t ∈ Bidir(i), ∃j, k ∈ RealBlackNi

⋃
RealBlackNt , ¬(BlackConNbrs(i) ∨ BlackConNbrs(i, t))

Link(i) ≡ ∃j, k, Potential_Link(i, j, k) ∧ (∀s : Potential_Link(s, j, k) :: i < s)

Actions:
A1 : (Candidate(i) ∨ Link(i)) ∧ Colori �= Black → Colori = Black;
A2 : ¬(Candidate(i) ∨ Link(i)) ∧ Colori �= Red → Colori = Red;

A. Normal Behavior
Starting from a good configuration, all candidates or links eventually become black by executing A1. A process

is a candidate if it is inside the query region or on the boundary, but not a redundant node. A node is critical if

446

DATTA, GRADINARIU, LINGA AND RAIPIN-PARVÉDY

removing it disconnects at least a pair of its neighbors locally. Due to the asynchronous execution of the algorithm,
all nodes may become candidates at the same time. In order to break the symmetry, only one node can be a candidate
in any neighborhood. However, choosing one candidate per neighborhood may disconnect the cover. This is avoided
by using link nodes. A node is a potential link node between two black nodes if it is a potential candidate but not a
candidate, and the two black nodes are not neighbors of each other. That is, a potential link node works as a bridge
between two black nodes that would otherwise be disconnected. A link node between two black nodes is the node
with the minimum ID (as per the local label) among the potential link nodes of the black nodes.

Since, rule A1 is applied asynchronously it is possible that redundant links and candidates are created. Rule A2

removes all redundancy in the connected cover.

B. Faults and Recovery
As in Algorithm 4.1, this algorithm also has two variables used in the solution: Si and Colori for a Sensor i. So,

we need to show that our solution can cope with all possible corruptions associated with these two variables.
1. Wrong initialization of the color variable. In Algorithm IMSC, all sensors, if properly initialized start

as red.
• Corruption of the interior & boundary Sensors. Assume that an interior or a boundary node is initialized

as a black sensor. Let i be this node. If i is not a redundant node or it is critical, then i remains black

(see Action A2). So, no correction is necessary. If i is redundant, then it executes Action A2 which will
change its color to red .

• Corruption of the exterior sensors & useless sensors. All exterior sensors must be eventually colored red.
If any exterior sensor starts as black, then it will execute Action A2 to change its color to red. If a black

sensor cannot be sensed by none of its neighbors, then it will turn red by executing A2.
• Candidate or link sensor’s color is corrupted from black to red. Action A1 corrects the color back to

black.
• Non-candidate or non-links sensor’s color changes from red to black. The node satisfies the guard of

Action A2. So, it will change its color to red.
2. Weakening or Failure of sensors, both in terms of communication and sensing ability. The algorithm behaves

as Algorithm DMSC in this situation.

C. Proof of Convergence
The legitimate configuration definition for Algorithm IMSC is based on the notion of candidate.

Definition 5.1 (Legitimacy Predicate LIMSC). The system is considered to be in a legitimate state (i.e., satisfies
the legitimacy predicate LIMSC) if the following conditions are true with respect to a query region:

(i) All candidate and link sensors are black.
(ii) All other active sensors—exterior, boundary, and interior—are red.
In the following, we prove that starting in an arbitrary configuration, the algorithm converges to a legitimate

configuration satisfying Definition 5.1.

Lemma 5.1. Starting from an arbitrary configuration, each node changes its color a finite number of times.

Proof. Any exterior node or useless node executes at most one step. If the node is black then it turns red, otherwise
it does not change its color.

A red interior node may execute first A1 and turns black then it may execute A2 and turns again red. In the
following we show that the previous scenario can be repeated only a finite number of times. Such a scenario is
possible if the node is part of a cycle that includes oscillating nodes. Assume the contrary. There is no cycle of
oscillating nodes that contains the node. Hence we can construct a linear chain formed only with oscillating nodes.
This chain will have at least one node outside the query region or at least one inside node that eventually will not
oscillate. After a finite number of steps the chain eventually stabilizes. That is, if the oscillating node is part of an
acyclic structure then after a finite number of steps the chain stabilizes.

447

DATTA, GRADINARIU, LINGA AND RAIPIN-PARVÉDY

Let p1 . . . pl . . . p1 be the oscillating cycle. The cycle oscillates only if: all nodes execute rule A1, then all of them
execute A2 and so on. This scenario is not possible because of the Candidate predicate. In a neighborhood only one
node has its predicate verified, hence the symmetry is broken.

Lemma 5.2. Starting from an arbitrary configuration, eventually, the input query region will be completely covered
by black nodes.

Proof. Let c be the initial illegitimate configuration. Each node in the query region executes a finite number of times
Algorithm IMSC (Lemma 5.1). Hence there exists c′ a configuration such that no node in c′ is able to execute its
algorithm. Assume that such configuration does not exist. Hence a node executes forever its algorithm. Let c′′ be the
configuration where all the nodes but one, p, are disabled.

Let Cover be the query region covered by black nodes in c′′. If p is candidate or link node colored red in c′′ .
then p executes rule A1 and colors itself black. That is, after the p execution the query region covering is completed.

If p is a redundant node and not critical then p executes A2 and colors itself in red. Again, after the p’s execution
the query region covering is completed.

Theorem 5.1 (Convergence). Starting from an arbitrary configuration, Algorithm IMSC reaches a configuration
that satisfies the legitimacy predicate LIMSC .

Proof. By Lemma 5.2, RQ is eventually covered. In the following, we will consider the two conditions to be satisfied
to satisfy LIMSC .

(i) All non-redundant boundary and interior sensors are black.
The proof follows from Action A1.

(ii) All other active sensors—exterior, boundary, and interior—are red.
Exterior nodes will turn red by applying Action A2. Other nodes if redundant will turn red by executing
Action A2.

VI. Self-∗ Proofs
We want to conclude the proof of Algorithms DMSC and IMSC in this section by showing how our solutions

satisfy some of the self-∗ properties. Algorithms DMSC and IMSC are distributed, self-configuring, self-healing,
and scalable. Thus, the proposed self-∗ solution makes the goal of ubiquitous/pervasive computing a reality since
two of the main requirements for this type of large ubiquitous sensor networks are low-power and self-configuring.

The next two lemmas prove that the two proposed algorithms satisfy the coverage and connectivity properties of
the connected cover problem. These two results will be used later to prove some self-∗ properties.

Lemma 6.1 (Coverage). In any legitimate configuration, the connected set cover MCSCQ computed by
Algorithm DMSC or Algorithm IMSC completely covers the query region RQ.

Proof. By contradiction. Assume that there is an area A which intersects RQ is uncovered by MCSCQ. Since
the network is assumed to be densely deployed, A must contain at least an active sensor i which is obviously red.
Then according to the predicates LDMSC or LIMSC , i must be a redundant sensor. By the definition of predicate
Redundant (i), i must be covered by some black nodes. Since i was chosen to be any node in the uncovered area
A, we can claim that all active red sensors in A are covered by some black sensors. Therefore, A is covered, and
we arrive at the contradiction.

Lemma 6.2 (Connectivity). In any legitimate configuration, the connected set cover MCSCQ computed by
Algorithm DMSC or Algorithm IMSC forms a connected graph.

Proof. By contradiction. Assume that there exist two node-disjoint connected components in the set MCSCQ.
All active sensors initially form a connected graph. So, the only way for the set being disconnected is by marking
some active sensor (say i) as redundant such that not considering i as part of the final set MCSCQ disconnected i’s
neighborhood.

However, per predicate BlackConNbrs(i), i is considered to be a redundant node only after ensuring the complete
bidirectional connectivity of its neighborhood. That is, if i was marked redundant and colored red by Action A2,

448

DATTA, GRADINARIU, LINGA AND RAIPIN-PARVÉDY

all neighbors of i remained connected. In other words, if the set MCSCQ was connected before A2 was executed,
it would remain connected after the execution of the action as well. We reach the contradiction.

Self-configuring and Self-healing. Algorithms DMSC and IMSC are self-configuring in the sense that starting
from any initial configuration, they configure themselves to form a network topology where all sensors (members
of the connected sensor cover) are able to communicate with each other either directly or indirectly. We also proved
that the given query region will eventually be covered starting from any arbitrary state. Hence these algorithms are
self-configuring.

The proposed algorithms are self-healing under various perturbations, such as node joins, failures (due to crash
and energy loss), state corruptions, and weakening of power. If a node fails, Algorithms DMSC and IMSC heal
themselves in the following manner: If it is not a redundant node, then a part of the query region RQ may become
uncovered. In that situation, a subset of its (active) neighbors will take over by executingAction A1 or A3 inAlgorithm
DMSC, and A1 inAlgorithm IMSC.A similar process may be initiated, if necessary, when a node’s power weakens
to the point that it affects the node’s communication ability. On the other hand, if a node joins the network (after
recovering, being repaired, or being re-energized in power), it would be considered as a redundant node since the
query region is already covered by the existing nodes. So, the node joining event will not change the connected
set cover. Arbitrary corruptions of state variables of the nodes are also dealt with in the solution—change of Color

variable due to faults is fixed in a very simple manner.

Self-stabilization.

Theorem 6.1 (LDMSC and LIMSC satisfy specification). Any system configuration satisfying the legitimacy
predicates LDMSC or LIMSC (per Definitions 4.1 or 5.1, respectively) satisfies the specification of the minimal†

connected sensor cover problem (per Definition 3.2).

Proof. The coverage and connectivity properties are proved in Lemmas 6.1 and 6.2, respectively. The definitions
of LDMSC and LIMSC imply that in a legitimate configuration no node can be removed from the coverage sets.
Therefore, the connected cover set MCSCQ computed at this point are minimal.

Lemma 6.3 (Closure). The legitimacy predicates LDMSC and LIMSC are closed.

Proof. In any configuration satisfying LDMSC or LIMSC , all actions of Algorithm DMSC or Algorithm IMSC
respectively are disabled. Therefore, the algorithms are silent, and satisfy the closure property.

Theorem 6.2. Algorithms DMSC and IMSC are self-stabilizing.

Proof. The proof follows from Theorem 6.1, Lemma 6.3, and Theorems 4.1 and 5.1.

VII. Complexity and Simulation
Algorithms DMSC and IMSC are space optimal solutions. Recall the problem specification. Upon termination

of the sensor cover algorithm, a node will know if it should be active or passive. So, it must use at least two states
to distinguish its two possible roles. Our solutions use exactly two states in the Color variable to implement this.
Moreover, both solutions compute a minimal cover for the query region.

In our simulations, for the first set of experiments, we assumed that nodes are fixed and uniformly deployed on a
grid of size 25 × 25 (625 nodes). Similar to9,12,15 we consider the sensing region associated with a sensor modeled
as a circular region around itself. We considered a homogeneous network (i.e. all sensors have the same sensing
region — circular of radius 9). Then in the second set of experiments, we considered 625 sensors randomly deployed
in a square region of size 100, with different sensing regions uniformly distributed in the range between 5 and 15.
In all the simulations, we considered a circular query region of radius 40. The number of experiments performed
for each simulated point was 100. We also performed simulations of the Distributed Priority algorithm of.19 The
performance metrics we measured are the stabilization time and the number of nodes per cover. The average results

† A connected cover is minimal if it does not include another connected cover.

449

DATTA, GRADINARIU, LINGA AND RAIPIN-PARVÉDY

Table 1 Average performance metrics.

Parameter DMSC IMSC 19

Self-stabilization capabilities Yes Yes No
Self-stabilization Time - grid deployment range 9 41 64 Not self-stabilizing
Self-stabilization Time - random deployment range 9 32 91 Not self-stabilizing
Self-stabilization Time - random deployment range 5–15 41 160 Not self-stabilizing
Cover Size - grid deployment range 9 116 123 145
Cover Size - random deployment range 9 146 157 204
Cover Size - random deployment range 5–15 145 154 250

Fig. 1 Experimental results.

are summarized in Table 1. Since algorithm19 is not self-stabilizing, the parameter “self-stabilization time” cannot
be computed for this particular algorithm.

Our experiments for both the topologies (grid and arbitrary) show that Algorithms DMSC and IMSC have
almost identical behaviors in terms of the coverage size, Algorithm DMSC computing a slightly better cover.

We can also observe that in terms of the cover size, the algorithm19 is inferior to ours. The main reason for this
is the mechanism of removing the redundant nodes. In our solutions, the redundant nodes are removed by checking
the existence of a connectivity path in the set of “black” neighbors, while in their solution, the redundant nodes are
removed by checking the existence of a connectivity path only in the set of black neighbors with lower priority.

Algorithm DMSC stabilizes faster than Algorithm IMSC (see Figs. 1 a, b, c). The slower stabilization of
Algorithm IMSC is due to the fact that a sensor inside the query region can change its color more than once. In
Algorithm DMSC, a sensor inside the query region waits until the covering wave arrives in its neighborhood.

Interestingly, the type of sensing regions (homogeneous or different) and the placement of sensors (grid or arbitrary)
does not make a strong impact on the coverage size and stabilization time for Algorithm DMSC. Algorithm IMSC
seems to be more sensitive to the topology and sensors characteristics.

We performed additional simulations for a densely populated environment, 500 sensors uniformly deployed on a
grid of size 40 × 40. In the case of the random placement and a sensing region of size 9, the average results confirm
the previous observations (i.e., our algorithms are more efficient). That is, the size of the coverage set computed by
algorithms DMSC and IMSC is on an average 35 sensors, while the size of the coverage computed by19 is 38
sensors.

We also simulated the impact of various types of faults (crash and memory corruption) on the construction of the
cover computed by IMSC and DMSC (Fig. 1c). The simulation results confirm the theoretical analysis. That is, our
algorithms self-heal starting from any configuration including memory corrupted configurations.

The fault injection was performed following the here after scenario. At times 72 and 112, 30% of nodes experience
crash and transient failures, respectively. Fig. 1c shows that the systems is able to self-heal. At time 152, 30% of
black nodes (nodes that form the cover) experience memory corruptions (i.e., their color change from black to red).
The system self-heals again without any external intervention.

450

DATTA, GRADINARIU, LINGA AND RAIPIN-PARVÉDY

VIII. Future work and Conclusion
The main motivation of our research was to design a totally distributed self-∗ query response system in sensor

networks. We have presented the first local, distributed, scalable, self-stabilizing designs of the connected sensor
cover problem introduced in.9 We presented two stabilizing solutions to the problem and showed how the solutions
are self-organizing and self-healing as well. Algorithms are space optimal—only two colors are used. Once the
system is stabilized, the faults can be corrected in their neighborhood. Hence the system is self-containing. This
research showed that the concept of self-stabilization subsumes many other self-∗ properties. We were also able
to demonstrate the power of self-stabilization to achieve quite an elegant and efficient solution to a very practical
problem in a large scale wireless sensor network.

The connected sensor cover problem is a global task, meaning nodes cannot locally compute the final response to
the query. However, we still require the algorithm to be local in the sense that the nodes collect information from their
immediate neighbors. Unlike the solution in,9 no node in the proposed algorithm collects global information, and no
node behaves as a special node in any stage of the execution of the algorithm. In our solution, every node can locally
decide if it should be an active or passive node in the current computation of the response to the query. Moreover,
unlike all the pre-existing solutions to this problem our solutions are able to locally cope with memory and program
counter corruptions. In summary, we achieve a global objective by using local and self-stabilizing algorithms.

Sensing coverage characterizes the monitoring quality provided by a sensor network in a designated region.
Different applications may require different degrees of sensing coverage. Our algorithms were designed with the
goal of achieving optimality in terms of the number of sensors while maintaining the degree of coverage of only one.
That is, even if a single active sensor fails, some area may become uncovered right away. Recall that the proposed
solutions are self-stabilizing with respect to all types of transient faults. So, they will cover the uncovered area very
quickly. Thus, no area will remain uncovered forever. In this regard, we can extend our solutions in a couple of ways.
Firstly, we may write a parametric solution where the input query will include the degree of coverage expected.
The predicate Redundancy will be relaxed to allow the corresponding higher degree of coverage. Secondly, we
can simply assume a particular degree (>1) of coverage in our algorithm. Similar to the implementation of a higher
degree of coverage to achieve better robustness, we may also require a higher degree of connectivity for the same
purpose (i.e., to increase the level of fault-tolerance). We can extend the neighborhood connectivity checking to k-
node (k > 1) disjointness in the communication graph. Unfortunately, higher degree of coverage/connectivity would
require more communication cost, i.e., consuming more power. We can conduct a study on the trade off between
connected cover size optimality vs. robustness and energy efficiency. Another interesting way to extend our work is
to implement different degrees of connectivity in the final communication graph produced by the connected sensor
cover algorithm. In the current solution, the predicate BlackConNbrs implements the connectivity. It guarantees
that all the neighbors of a node i are strongly connected before marking i as redundant. As in the case of better
coverage, we cannot ignore the power consumption. So, the above study would involve investigating the impact of
better fault-tolerance on the energy spent.

Another approach to solving the connected sensor cover problem is based on Steiner trees. The algorithm would
require two phases. In the first phase, a sensor cover is computed without considering the connectivity criterion.
In the next phase, a Steiner tree is constructed on the sensor cover to connect the nodes in the cover set. This
approach may have two negative impacts. First, the set cover produced finally at the end of the second phase may
have more redundant nodes than the approach used in our solutions. Second, computing the Steiner tree may incur
higher communication cost. However, we can study implementation of various types of heuristic methods used in
constructing Steiner trees in our common setting—local, distributed, and self-stabilizing.

Acknowledgments
We would like to thank anonymous reviewers for their constructive comments. Our special thanks go to the

reviewer who brought the work of19 to our attention.

References
1Weiser, M., “The Computer for the 21st century,” Scientific American, Vol. 265, No. 3, Sep. 1991, pp. 66–75.
2Estrin, D., Govindan, R., Heidemann, J., and Kumar, S., “Next Century Challenges: Scalable Coordination in Sensor

Networks,” Mobile Computing and Networking, 1999, pp. 263–270.

451

DATTA, GRADINARIU, LINGA AND RAIPIN-PARVÉDY

3Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., and Cayirci, E., “A Survey on Sensor Networks,” IEEE Communications
Magazine, Vol. 40, No. 8, Aug. 2002, pp. 102–114.

4Zhang, H., and Arora, A., “GS3: Scalable Self-Configuring and Self-Healing in Wireless Networks,” In PODC02, 2002.
5Ganger, G. R., Strunk, J. D., and Klosterman, A. J., “Self-* Storage: Brick-Based Storage with Automated Administration.”

Technical Report CMU-CS-03-178, Carnegie Mellon University, Aug. 2003.
6Strunk, J. D., and Ganger, G. R., “A Human OrganizationAnalogy for Self-* Systems,” Technical Report, FCRC Proceedings

of the First Workshop on Algorithms and Architectures for Self-Managing Systems in conjunction with Federated Computing
Research Conference, June 2003.

7Dijkstra, E. W., “Self Stabilizing Systems in spite of Distributed Control,” Communications of the Association of the
Computing Machinery, Vol. 17, No. 11, Nov. 1974, pp. 643–644.

8Dolev, S., Self-Stabilization, MIT Press, 2000.
9Gupta, H., Das, S. R., and Gu, Q., “Connected Sensor Cover: Self-Organization of Sensor Networks for Efficient Query

Execution,” In MobiHoc03, 2003, pp. 189–200.
10Kumar, V. S. A., Arya, S., and Ramesh, H., “Hardness of Set Cover with Intersection 1,” In ICALP00 Proceedings of the

Twenty-Seventh International Colloquium on Automata, Languages and Programming, 2000, pp. 624–635.
11Wang, X., Xing, G., Zhang, Y., Lu, C., Pless, R., and Gill, C., “Integrated Coverage and Connectivity Configuration in

Wireless Sensor Networks,” In ACM SenSys03, Nov. 2003, pp. 28–39.
12Zhang, H., and Hou, J.C., “Maintaining Sensing Coverage and Connectivity in Large Sensor Networks,” Technical Report

UIUCDCS-R-2003-2351, University of Illinois at Urbana Champaign, June 2003.
13Chen, B., Jamieson, K., Balakrishnan, H., and Morris, R., “Span: An Energy-Efficient Coordination Algorithm for Topology

Maintenance in ad hoc Wireless Networks,” In MobiCom02, July 2001, pp. 85–96.
14Cerpa, A., and Estrin, D., “Ascent: Adaptive Self-Configuring Sensor Networks Topologies,” In INFOCOM02 Proceedings

of the Conference on Computer Communications, June 2002.
15Shakkottai, S., Srikant, R., and Shroff, N., “Unreliable Sensor Grids: Coverage, Connectivity and Diameter,” In INFOCOM03

Twenty-Second Annual Joint Conference of the IEEE Computer and Communications Societies, Vol. 2, Apr. 2003, pp. 1073–1083.
16Tian, D., and Georganas, N. D., “A Coverage-Preserving Node Scheduling Scheme for Large Wireless Sensor Networks,”

In WSNA02 Proceedings of the First Workshop on Sensor Networks and Applications, Sep. 2002, pp. 32–41.
17Xu, Y., Heidemann, J., and Estrin, D., “Geography-Informed Energy Conservation for ad hoc Routing,” In MobiCom02,

2001, pp. 70–84.
18Ye, F., Zhong, G., Cheng, J., Lu, S., and Zhang, L., “PEAS: A Robust Energy Conserving Protocol for Long-Lived Sensor

Networks,” In ICDCS03 Proceedings of the 23rd International Conference on Distributed Computing Systems, 2003, pp. 1–10.
19Zhou, Z., Das, S. R., and Gupta, H., “Connected k-Coverage Problem in Sensor Networks,” In ICCCN, 2004, pp. 373–378.
20Zhou, Z., Das, S. R., and Gupta, H., “Fault Tolerant Connected Sensor Cover with Variable Sensing and Transmission

Ranges,” In SECON, 2005.
21Dai, F., and Wu, J., “Distributed Dominant Pruning in ad hoc Networks,” ICC’03, 2003.

Shlomi Dolev
Associate Editor

452

